A GX16 connector that does not fail

If you’re working in the weighing industry, you’ve probably come across the GX16 connector:

GX16 connector
Typical GX16 connector (male)

This circular connector is named after its M16 thread and can have up to 8 pins. While it is frequently referred to as an “aviation connector”, I sincerely hope that it is not actually used in aircraft, as I’ve seen many of these connectors fail. Their tiny screws are prone to coming loose, which renders the strain relief useless. Then it’s only a matter of time before the cable is pulled too hard and the wires detach.

What does it take to make a reliable GX16 connector?

This is the Ohaus Catapult 5000 scale:

Ohaus Catapult 5000 scale

It uses an overmolded GX16 connector to connect the platform to the indicator:

Ohaus Catapult 5000 scale indicator

We’ve sold hundreds of these scales and never had an issue with them that was caused by the connectors. This is due to the extensive work that Ohaus put into making them, as demonstrated by the photos below. Apologies for the photo quality, I didn’t take them in our photo studio and it shows.

Completely disassembled GX16 connector
Disassembly of the overmolded Ohaus Catapult 5000 GX16 connector (female) reveals that it contains a complete regular connector, including the metal backshell
The screws of the strain relief are secured with heat shrink tubing
The connector is completely filled
After removal of some material
Further material removal reveals that heat shrink sleeves were used after soldering

Further info

RS-232 troubleshooting: fake chips

RS-232 is still the most popular interface for balances and scales. It is often described as “simple”, however, when things don’t work as expected, finding the cause can be difficult.

This article does not aim to be a comprehensive RS-232 troubleshooting guide (for this purpose, please refer to this PDF document from Agilent Technologies or the troubleshooting section on our 232key website). Instead, it is supposed to raise awareness of an issue that is often ignored: counterfeit ICs.

When you’ve tried everything and still can’t reliably communicate with your scale via RS-232, there’s a chance a fake chip may be the cause.

Just a few weeks ago, the thought of encountering counterfeit ICs in digital scales had not crossed my mind. Thanks to FTDI’s recent attempt to “brick” counterfeits via Windows Update, fake chips are now a hot topic on the web. While I don’t agree with the way FTDI tried to punish the end user, I wish the controversy had occurred a few weeks earlier. This would have saved me a lot of time.

Back then I was doing the final QC for several scales which were about to be shipped to a customer. The last item on my checklist was “bidirectional communication using RS-232”, something I had done many times before with this exact model. What should have taken a few minutes ended up taking me several days and nearly drove me crazy because the problems I encountered were difficult to replicate. Eventually, I arrived at the conclusion that something was very wrong with the MAX232CPE+ chips, which are responsible for converting TTL signals to RS-232 levels. After doing some research on the internet*, I started to suspect those chips were counterfeit. It seemed like a far-fetched idea** at the time, but I still desoldered them, took a few pictures and sent them to Maxim Integrated.

Fake MAX232CPE+ and MAX232EPE+

Counterfeit MAX232CPE+
Fake, fake and fake.

Thankfully, I received a reply in less than two hours:

“Yes these parts are counterfeit, they do not match markings of lots we manufactured.”

Now extremely suspicious of all MAX232s***, I disassembled a few more scales from 4 different vendors. 3 contained ICs belonging to the MAX232 family, so I sent the pictures to Maxim Integrated, too. In addition to the chips used by the scale manufacturer which had prompted me to start this investigation, one chip used by another manufacturer was also flagged as counterfeit.

Counterfeit MAX232EPE+
Counterfeit MAX232EPE+

To be fair, my sample size is too small to draw meaningful conclusions regarding the entire weighing industry. However, if you’re in the business of making weighing instruments and were blissfully unaware of this issue, I hope this article serves as a wake-up call.


* I found documents like this one (16 MB PDF presentation by SMT Corporation) or this one (100 KB PDF, University of Conneticut), this article by Maxim Integrated and even videos of YouTubers walking through huge electronic component malls in Shenzhen where almost everything is counterfeit.

** Though not quite as far-fetched as the manufacturer’s idea that “static build up from the polystyrene packaging in road transportation” was to blame.

*** And also seriously angry at having wasted so much time doing something the manufacturer should have done. I won’t do any naming and shaming here, though.


Update October 3, 2017: Several articles concerning this issue have appeared since I originally wrote this blog post.

Update October 15, 2020:

Update February 13, 2022:

A look inside the HC-i counting scale

One of the interesting features of A&D’s HC-i counting scale is its modular construction. The indicator can be separated from the base:
A&D HC-i counting scale

The following image lets you have a look inside the base of the scale. You can click on the tabs to highlight different elements and read a short description:

HC-i counting scale inside base
HC-i load cellThe load cell is attached to the bottom plate on one end and to the top plate on the other. It will slightly bend when a load is applied.
Strain gagesThe deformation of the load cell is measured by tiny sensors called strain gauges. If you look closely (or click on the image to see it in full size), you can see two of them on top of the load cell while two more are located on the bottom side.
Overload stopsThe overload stops prevent the load cell form deforming too far when a load beyond its capacity is applied. The two screws on the top are used to slightly tilt the top plate in order to adjust the overload gap between the plate and the 4 corner stops.

Please don’t hesitate to leave a comment and let me know if you’d like to see more interactive images.